Enhancement Effects of the Terahertz Near-Field Microscopy
نویسندگان
چکیده
Terahertz near-field detection based and imaging on a nanotip has drawn wide attention following extensive applications of terahertz imaging technologies. Through the local enhanced electric field created by a terahertz nanotip in the near field, it is very likely to attain superior detection sensitivity and higher spatial resolution. This paper simulates the local enhancement effects of the terahertz near-field microscopy using a two-dimension finite difference time domain (2D-FDTD) method. Factors that influence the enhancement effects are investigated and analyzed in detail. Simulation results show that the size of the nanotip apex, the apex-substrate distance, dielectric properties of the substrate and the detected sample, etc., have significant impacts on the electric field enhancement and spatial resolution of the terahertz near-field nanotip, which can be explained from the effective polarizability of the nanotip-sample/substrate system.
منابع مشابه
Antenna effects in terahertz apertureless near-field optical microscopy
We have performed measurements on terahertz (THz) apertureless near-field microscopy that show that the temporal shape of the observed near-field signals is approximately proportional to the time-integral of the incident field. Associated with this signal change is a bandwidth reduction by approximately a factor of 3 which is observed using both a near-field detection technique and a far-field ...
متن کاملReal-time terahertz near-field microscope.
We report a terahertz near-field microscope with a high dynamic range that can capture images of a 370 x 740 μm2 area at 35 frames per second. We achieve high spatial resolution (14 μm corresponding to λ/30 for a center frequency at 0.7 THz) on a large area by combining two novel techniques: terahertz generation by tilted-pulse-front excitation and electro-optic balanced imaging detection using...
متن کاملTerahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas.
Imaging and sensing applications based on pulsed terahertz radiation have opened new possibilities for scientific and industrial applications. Many exploit the unique features of the terahertz (THz) spectral region, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Because of their diffraction limit, THz far-field imaging techniques la...
متن کاملNear field imaging of terahertz focusing onto rectangular apertures.
We performed terahertz near-field experiments on single rectangular holes with various lengths grown on an electro-optic crystal substrate with lambda/100 resolution. We find that the near-field amplitude becomes proportionally larger as the rectangle becomes narrower, strongly suggesting that a constant energy passes through even for a very narrow slit. The occurrence of a large field enhancem...
متن کاملTime-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements.
We investigate the interaction between terahertz waves and resonant antennas with sub-cycle temporal and λ/100 spatial resolution. Depositing antennas on a LiNbO₃ waveguide enables non-invasive electro-optic imaging, quantitative field characterization, and direct measurement of field enhancement (up to 40-fold). The spectral response is determined over a bandwidth spanning from DC across multi...
متن کامل